CMOS electronics probe inside biological cellular networks (1st generation device) Donhee Ham, Harvard University

Electrogenic cellular networks

~10¹¹ neurons

~10¹⁵ synapses

~10⁹ cardiomyocytes ~10¹⁰ cell-cell connections

Dichotomy —— intracellular vs. parallel Patch pipette —— Intracellular, but not parallel

Dichotomy —— intracellular vs. parallel

Microelectrode array — parallel, but not intracellular

26,400 electrodes 1,024 channels

M. Ballini et al., *IEEE JSSC* (2014)

CMOS nanoelectrode array —— Intracellular + parallel

Vertical Nanowires

Park lab, *Nature Nano.* 7, 180 (2012).

Prof. Hongkun Park (Harvard Chemistry & Physics)

CMOS nanoelectrode array —— Intracellular + parallel

Jeffrey Abbott

Tianyang Ye (Park lab)

CMOS IC chip (1024 active site array)

Vertical nanoelectrodes on the surface + packaging

9 nanoelectrodes per pixel Packaged device

Cardiomyocyte tissue *in vitro* cultured on top

Vertical nanoelectrodes

Post fabrication steps

Pixel circuit & electrode characterization

Single myocyte intracellular recording & stimulation

Parallel + intracellular recording from 235 cardiomyocytes

Parallel + intracellular recording from 235 cardiomyocytes

Parallel + intracellular recording – another example

Drug-screening – Network-level intracellular investigation

CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging

Jeffrey Abbott¹, Tianyang Ye¹, Ling Qin¹, Marsela Jorgolli^{2†}, Rona S. Gertner³, Donhee Ham¹* and Hongkun Park^{2,3,4*}

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA. ²Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA. ³Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ⁴Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA. †Present address: Hybrid Modality Engineering R&D, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, California 91360, USA. *These authors contributed equally to this work. *e-mail: donhee@seas.harvard.edu; Hongkun_Park@harvard.edu

ARL

Jeffrey Abbott

Prof. Hongkun Park

Ling Qin

Marsela Jorgolli (Park)

